Visual Python Manual
  • Visual Python Manual
  • GETTING STARTED
    • Welcome to Visual Python
    • How to install
    • Installing FAQ
    • Official homepage
    • Link to Github
  • Data Analysis
    • 1. Import
    • 2. File
    • 3. Data Info
    • 4. Frame
      • 4-1. Frame - Edit
      • 4-2. Frame - Transform
      • 4-3. Frame - Sort
      • 4-4. Frame - Encoding
      • 4-5. Frame - Data Cleaning
    • 5. Subset
    • 6. Groupby
    • 7. Bind
    • 8. Reshape
  • Visualization
    • 1. Chart Style
    • 2. Pandas Plot
    • 3. Matplotlib
    • 4. Seaborn
    • 5. Plotly
    • 6. WordCloud
  • Statistics
    • 1. Prob. Distribution
    • 2. Descriptive Statistics
    • 3. Normality Test
    • 4. Equal Var. Test
    • 5. Correlation Analysis
    • 6. Reliability Analysis
    • 7. Chi-square Test
    • 8. Student's T-test
    • 9. ANOVA
    • 10. Factor Analysis
    • 11. Regression
    • 12. Logistic Regression
  • Machine Learning
    • 1. Data Sets
    • 2. Data Split
    • 3. Data Prep
    • 4. AutoML
    • 5. Regressor
    • 6. Classifier
    • 7. Clustering
    • 8. Dimension
    • 9. GridSearch
    • 10. Fit/Predict
    • 11. Model Info
    • 12. Evaluation
    • 13. Pipeline
    • 14. Save / Load
Powered by GitBook
On this page
  1. Machine Learning

10. Fit/Predict

Previous9. GridSearchNext11. Model Info

Last updated 10 months ago

  1. Click on Fit/Predict under the Machine Learning category.

  1. Model: Select the model you want to use.

  2. Action: Choose the operation to apply to the selected model.

  3. Available operations depend on the selected model.

    • Fit: Train the model.

    • Fit and Transform: Train the model and simultaneously transform the data.

    • Transform: Transform the data. (Use a trained model.)

    • Inverse Transform: Apply the reverse transformation of the model to restore the data to its original form.

    • Predict: Make predictions using the trained model.

    • Predict Probability: Return the probabilities of each data point in the dataset belonging to each class.

    • Fit and Predict: Train the model and make predictions.

  4. Code view: Preview the generated code.

  5. Run: Execute the code.